

Datasheet

InnoLux

G104X1-T03

CH-01-026 (Rev.C1, until Version 2.2)

CH-01-026R1.1 (Rev. C2)

CH-01-026R1.2 (Rev. C3)

CH-01-026R1.3 (Rev. C4)

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Do	c. Number:
	Tentative Specification
	Preliminary Specification
	Approval Specification

MODEL NO.: G104V1 SUFFIX: T03

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for y signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
許君逑	林秋森	許秝茵

Version 3.2 23 November 2018 1 / 27

CONTENTS

1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 LED CONVERTER	 7
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 LED CONVERTER	 8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 12
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT	 13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 SCANNING DIRECTION	 15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 19
8. RELIABILITY TEST CRITERIA	 22
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD 9.3 UN-PACKING METHOD	 23
10. DEFINITION OF LABELS	 25
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 26
12. MECHANICAL CHARACTERISTICS	 27

REVISION HISTORY

Version	Date	Section	Description
3.0	8 Jan, 2017	All	G104V1-T03 Approval Spec was first issued.
3.1	Feb 07, 2018	10.1	Modified INX MODULE LABEL
3.2	Nov 23, 2018	12	Updated outline drawing (front & panel gap 0.3mm to 0.5mm)

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G104V1-T03 model is a IAV 10.4" TFT-LCD module with white LED Backlight Unit and a 31-pin and 1ch TTL interface. This module supports 640 x 480 VGA mode and display 262,144 colors. The converter for the LED Backlight Unit is built in.

1.2 FEATURES

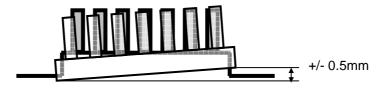
- Wide viewing angle
- High contrast ratio
- VGA (640 x 480 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- CMOS/TTL (Transistor-Transistor Logic) interface
- Reversible-scan direction
- RoHS Compliance
- LED Light Bar Replaceable

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	10.4	inch	
Active Area	211.2(H) x 158.4(V)	mm	(1)
Bezel Opening Area	215.4(H) x 161.8(V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	640 x R.G.B. x 480	pixel	-
Pixel Pitch	0.33(H) x 0.33(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25%)	-	-
Module Power Consumption	7.38	W	Тур.



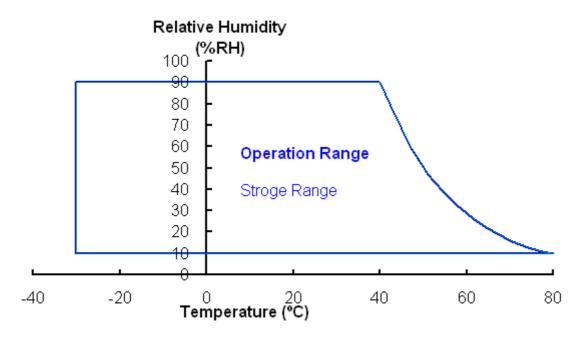
1.5 MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	225	225.5	226	mm	
Module Size	Vertical (V)	175.8	176.3	176.8	Mm	(1)
	Depth (D)	8.84(7.31)	9.34(7.81)	9.84(8.31)	Mm	
Weight		345	395	445	g	ı
I/F connector mounting		The mounting in		(2)		
ро	sition	the screen center	within ±0.5mm as	s the horizontal.	-	(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions. Module depth 7.8mm does not include TTL connector, with TTL connector is 9.34mm (typical).

(2) Connector mounting position

Version 3.2 23 November 2018 5 / 27


2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Svmbol	,	Value	Unit	Note	
Item	Symbol	Min.	Max.	Offic		
Operating Ambient Temperature	T _{OP}	-30	+80	٥C	(1)	
Storage Temperature	T _{ST}	-30	+80	٥C	(1)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltom	Cymphol	V	'alue	Lloit	Note	
Item	Symbol	Min.	Max.	Unit		
Power Supply Voltage	VCC	-0.3	7	V	(1)	

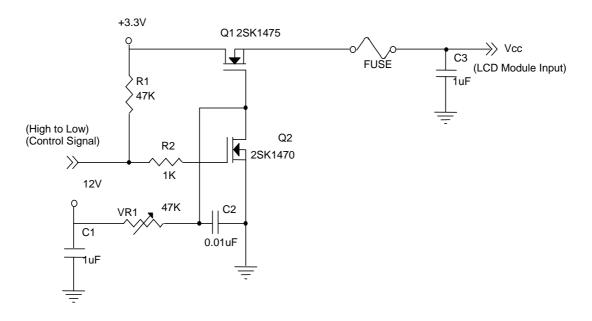
2.2.2 LED CONVERTER

Item	Symbol	\	√alue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Converter Voltage	Vi	-0.3	18	V	(1), (2)	
Enable Voltage	EN		5.5	V		
Backlight Adjust	ADJ		5.5	V		

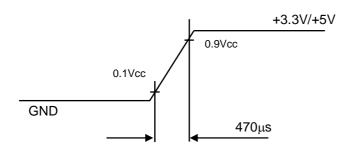
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

3. ELECTRICAL SPECIFICATIONS

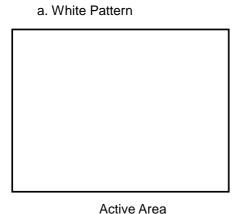

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C


Parameter	Symbol	Value			Unit	Note	
Parameter		Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply Voltage		VCC	3.0	3.3	3.6	V	at VCC=3.3V
rower Supply voltage		VCC	4.75	5.0	5.25	V	at VCC=5.0V
	White		390	490	540	mA	(3)a, at VCC=3.3V, 60Hz
Dower Cupply Current	vvriite		290	390	440	mA	(3)a, at VCC=5.0V, 60Hz
Power Supply Current	Black		370	470	520	mA	(3)b, at VCC=3.3V, 60Hz
			280	380	430	mA	(3)b, at VCC=5.0V, 60Hz
Power Consumption		P_L		1.617		W	VCC=3.3V, 60Hz
Logic input voltage		V_{IH}	$0.7V_{CC}$	-	V _{CC}	V	
	·	V_{IL}	0	1	0.3V _{CC}	V	

Note (1) The module is recommended to operate within specification ranges listed above for normal function.

Note (2) Measurement Conditions:



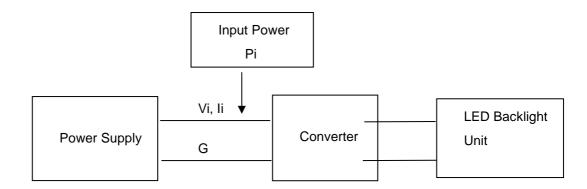
Vcc rising time is 470μs

Note (3) The specified power supply current is under the conditions at Ta = 25 ± 2 °C, $f_v = 60$ Hz, where as a power dissipation check pattern below is displayed.

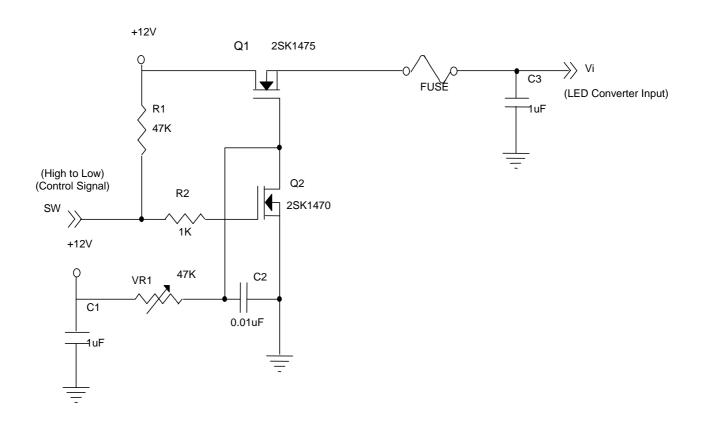
b. Black Pattern

Active Area

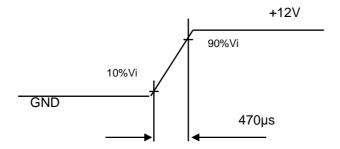
3.2 LED CONVERTER


 $Ta = 25 \pm 2 \, ^{\circ}C$

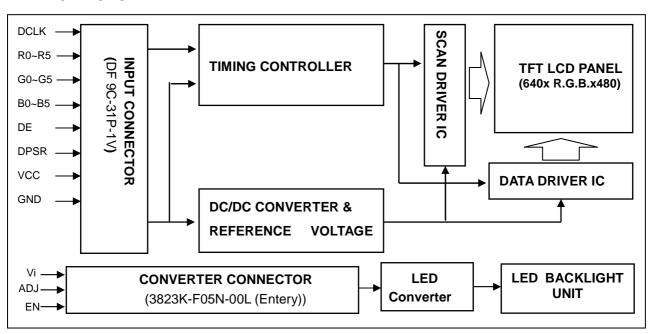
Parameter		Symbol	Value			Unit	Note	
Faiaii	ietei	Symbol	Min.	Тур.	Max.	Offic	Note	
Converter Power Supply	√oltage	Vi	10.8	12.0	12.6	V	(Duty 100%)	
Converter Power Supply	Current	l _i		0.48		А	(1) Vi = 12V (Duty 100%)	
Converter Power Consumption		Pi		5.76		W	(1) Vi = 12V (Duty 100%)	
EN Control Level	Backlight on		2.0	3.3	5.0	V		
EN Control Level	Backlight off		0		0.8	V		
PWM Control Level	PWM High Level		2.0	3.3	5.0	V		
F VVIVI CONTION Level	PWM Low Level		0		0.8	V		
PWM Control Duty Ratio			20		100	%		
PWM Control Frequency		f _{PWM}	190	200	20K	Hz		
LED Life Time		L _L	50,000			Hrs	(2)	


Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at $= 25 \pm 2 \,^{\circ}\text{C}$ and $I_{\text{LED}} = 70\text{mA}_{\text{DC}}$ (LED forward current) until the brightness becomes $\leq 50\%$ of its original value. And minimum LED lifetime is estimated and provided by Nichia in Japan.


Operating LED under high temperature environment will reduce life time and lead to color shift.

Vi rising time is 470us



Version 3.2 23 November 2018 10 / 27

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

	JIIIODOLL	
Pin	Name	Description
1	GND	Ground
2	DCLK	Dot clock
3	N.C.	N.C.
4	N.C.	N.C.
5	GND	Ground
6	R0	Red data (LSB)
7	R1	Red data
8	R2	Red data
9	R3	Red data
10	R4	Red data
11	R5	Red data (MSB)
12	GND	Ground
13	G0	Green data (LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data (MSB)
19	GND	Ground
20	В0	Blue data (LSB)
21	B1	Blue data
22	B2	Blue data
23	В3	Blue data
24	B4	Blue data
25	B5	Blue data (MSB)
26	GND	Ground
27	DE	Data enable signal
28	VCC	Power supply
29	VCC	Power supply
30	N.C.	Reserved, please keep it floating.
31	DPSR	Selection of scan direction
<u> </u>		1

Note (1) Connector Part No.: DF 9C-31P-1V or equivalent.

5.2 BACKLIGHT UNIT (Converter connector pin)

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	V_{GND}	Converter ground	Ground
3	EN	Enable pin	
4	ADJ	Backlight Adjust	PWM Dimming
5	NC	Not Connect	

Note (1) Connector Part No.: 3823K-F05N-00L (Entery) or equivalent

Note (2) User's connector Part No.: H208K-P05N-02B (Entery) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

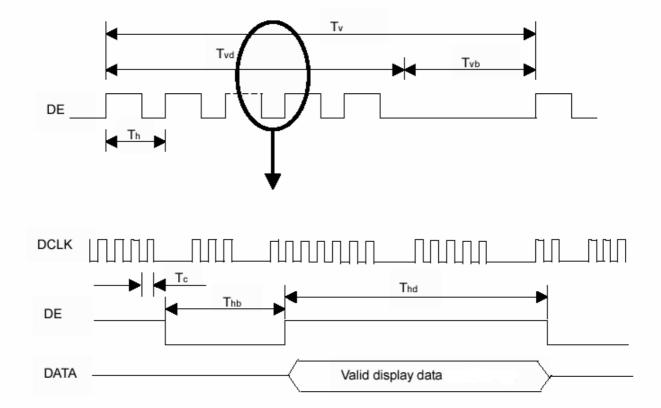
The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

										Dat	ta Si	gnal							
	Color				Red				Green				Blue						
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	: '	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

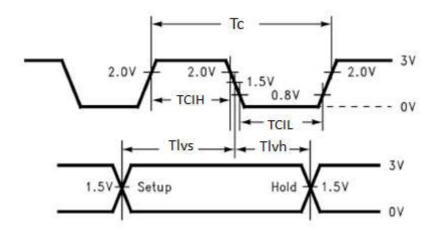
6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

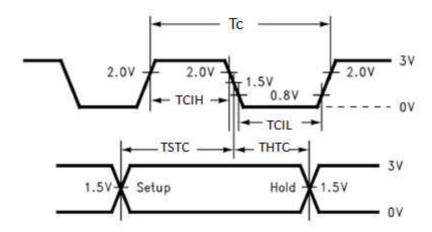

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	21	25.175	29	MHz	-
Dot Clock	Period	Тс	34.48	39.72	47.62	ns	
	High Time	TCIH	0.35 Tc	0.5 Tc	0.65 Tc	ns	
	Low Time	TCIL	0.35 Tc	0.5 Tc	0.65 Tc	ns	
Det Dete	Setup Time	Tlvs	8	-	-	ns	(4)
Dot Data	Hold Time	Tlvh	12	-	-	ns	(4)
DE.	Setup Time	TSTC	8	-	-	ns	(5)
DE	Hold Time	THTC	12	-	-	ns	(5)
	Frame Rate	Fr	-	60	-	Hz	
Harizantal Active Diapley Torm	Total	Th	730	800	900	Th	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	-	640	-	Th	-
	Blank	Thb	90	160	260	Th	-
	Total	Tv	485	525	576	Tc	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	-	480	-	Tc	-
	Blank	Tvb	5	45	96	Tc	-

Note: (1)This module is operated by DE only mode

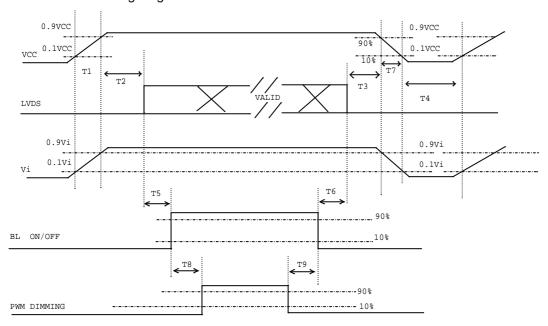

- (2) Frame rate is 60Hz
- (3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM



(4) Clock and data setup/hold and high/low time input waveforms.

(5) Clock and DE setup/hold and high/low time input waveforms.



Version 3.2 23 November 2018 15 / 27

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Doromotor		Heite		
Parameter	Min	Тур	Мах	Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
Т5	200	-	-	ms
Т6	20	-	-	ms
Т7	5	-	300	ms
Т8	10	-	-	ms
Т9	10	-	-	ms

6.3 SCANNING DIRECTION

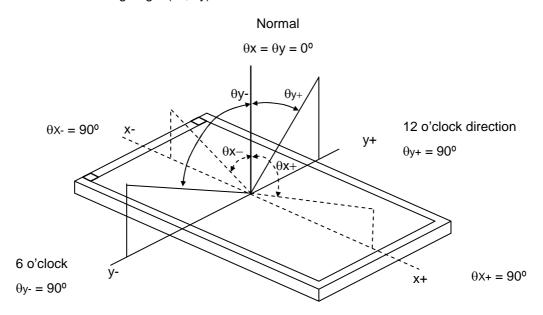
The following figures show the image see from the front view. The arrow indicates the direction of scan.

Figure 1. Normal scan (DPSR: Low or Open)

Figure 2. Reverse scan (DPSR: High)

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITION


Item	Value	Unit		
Ambient Temperature (Ta)	25±2	°C		
Ambient Humidity (Ha)	50±10	%RH		
Supply Voltage				
Input Signal	According to typical value in "ELECTRICAL CHARACTERISTICS"			
LED Light Bar Input Current Per Input Pin				

7.2 OPTICAL SPECIFICATION

The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

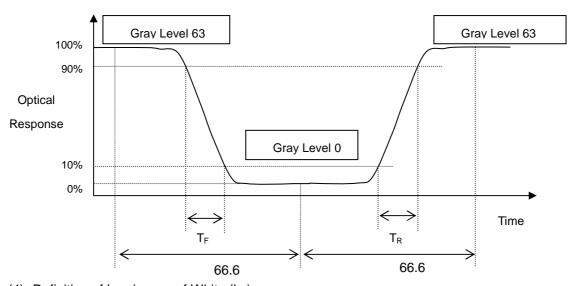
It	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Dod	Rx			0.619		-		
	Red	Ry			0.357		-		
	Croon	Gx			0.333		-		
Color	Green	Gy		Тур -	0.562	Typ +	-	(1) (5)	
Chromaticity	Blue	Вх	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	0.05	0.145	0.05	-	(1), (5)	
	blue	Ву	CS-1000		0.092		-		
	White	Wx			0.313		-		
		Wy			0.329		-		
Center Luminan	ce of White	L _C		450	500	-	-	(4), (5)	
Contrast Ra	atio	CR		1000	1500	-	-	(2), (5)	
Pasnonsa T	Timo	T_R	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	14	19	ms	(3)	
ixesponse i	Response Time		$\theta_X = 0$, $\theta_Y = 0$	-	9	14	ms	(3)	
White Varia	White Variation		$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-	-	1.4	-	(5), (6)	
	Horizontal	θ_x +		80	88	-			
Viewing Angle	ПОПДОПІАІ	θ_{x} -	OD: 40	80	88	-	Dog		
	Vertical	θ_{Y} +	CR≥10	80	88	-	Deg.	(1), (5)	
	Vertical	θ _Y -		80	88	-		<u> </u>	

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio, (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio, CR = L63 / L0


L63: Luminance of gray level 63

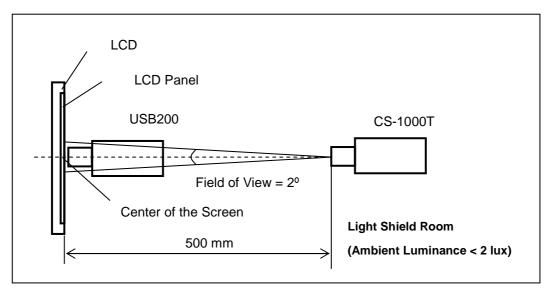
L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

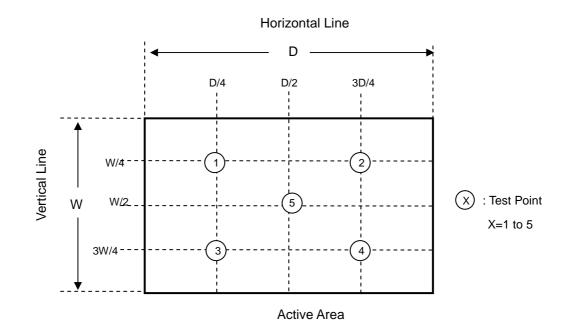
Note (3) Definition of Response Time (T_R, T_F) and measurement method:

Note (4) Definition of Luminance of White (L_C):


Measure the luminance of gray level 63 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Measurement Setup:


The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Version 3.2 23 November 2018 **20 / 27**

8. RELIABILITY TEST CRITERION

Test Item	Test Condition	Note
High Temperature Storage Test	80°C, 240 hours	(4)
Low Temperature Storage Test	-30°C, 240 hours	(1)
Thermal Shock Storage Test	-30°C, 0.5hour←→80°C, 0.5hour; 100cycles, 1hour/cycle	(2)
High Temperature Operation Test	80°C, 240 hours	(4) (5)
Low Temperature Operation Test	-30°C, 240 hours	(3)
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	(1) (2) (4) (6)
Shock (Non-Operating)	200G, 2ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.	(3) (4)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3) (4)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 85 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9. PACKING

9.1 PCAKING SPECIFICATIONS

- (1) 18pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 11.23Kg (18 modules per box)

9.2 PACKING METHOD

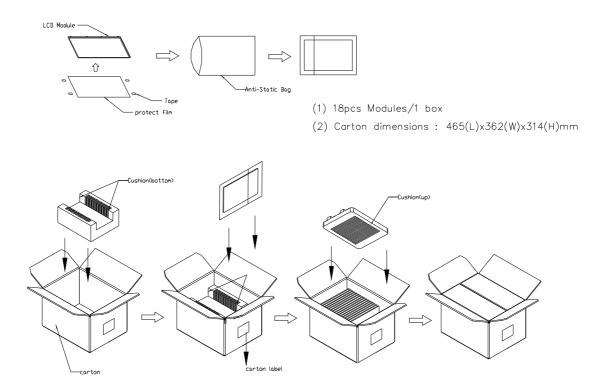


Figure. 9-1 Packing method

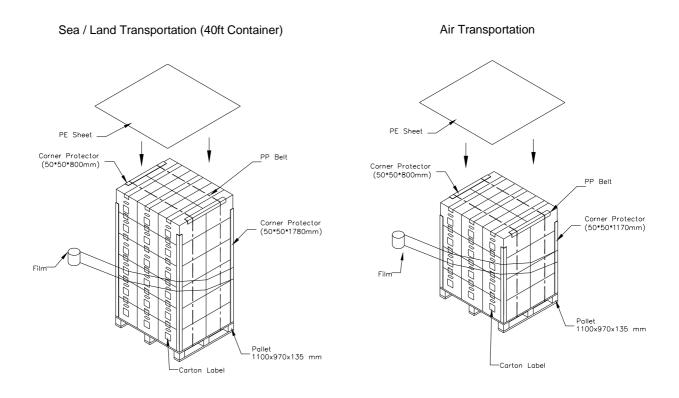


Figure. 9-2 Packing method

9.3 UN-PACKING METHOD

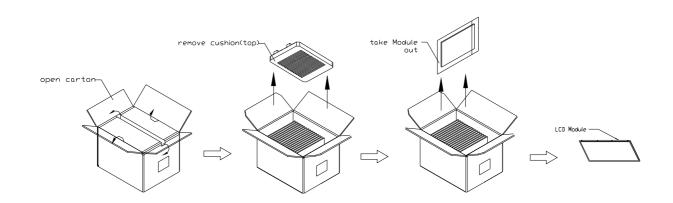


Figure. 9-3 UN-Packing method

Version 3.2 23 November 2018 23 / 27

10. DEFINITION OF LABEL

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a)Model Name: G104V1-T03

(b)Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) Serial ID: XX-XX-XX-YMD-L-NNNN

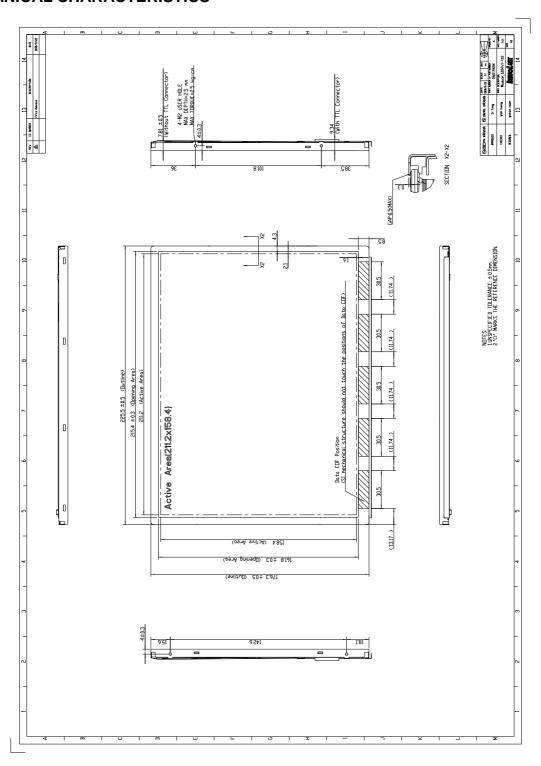
Code	Meaning	Description
XX	INX internal use	-
XX	Revision	Cover all the change
Х	INX internal use	-
XX	INX internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) FAB ID(UL Factory ID):

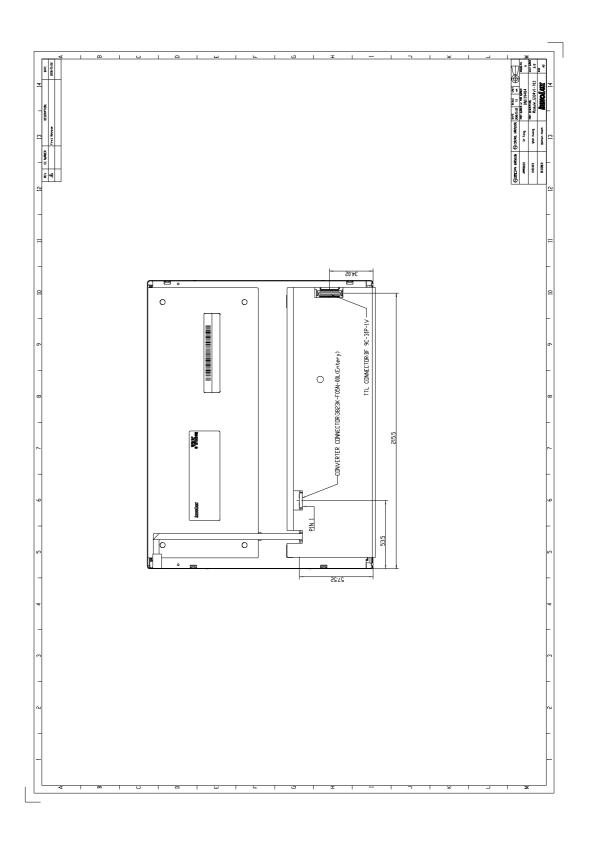
• • • • • • • • • • • • • • • • • • • •	
Region	Factory ID
TWINX	GEMN
NBINX	LEOO
NBINX	VIRO
NHINX	CAPG

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS


- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS


- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

12. MECHANICAL CHARACTERISTICS

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Lechwiesenstr. 9 86899 Landsberg am Lech

Phone: +49 8191 91172-0
E-Mail: sales@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

FORTEC Elektronik AG

Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: office@fortec.at
Internet: www.fortec.at

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
Internet: www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: <u>info@displaytechnology.co.uk</u> Internet: <u>www. displaytechnology.co.uk</u>

USA

APOLLO DISPLAY TECHNOLOGIES

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: +1 631 5804360
E-Mail: info@apollodisplays.com
Internet: www.apollodisplays.com