

Datasheet

ORTUSTECH

COM43H4N02XLC

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Specifications for

Blanview TFT-LCD Monitor

<u>Version 1.0</u> (Please be sure to check the specifications latest version.)

MODEL COM43H4N02XLC

Customer's Approval

Signature:

Name:

Section:

Title:

Date:

ORTUSTECH

ORTUS TECHNOLOGY CO., LTD.

Approved by

Approved by

non

Checked by imuta

Prepared by

	•		,	
Issue:	Jun.	10,	2015	

Version History

1.0 Jun. 10, 2015 - - First issue 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>Ver.</th> <th>Date</th> <th>Page</th> <th></th> <th>Description</th> <th></th>	Ver.	Date	Page		Description	
		Jun. 10, 2015		- First issue		
			C	RIUS TECHNO	LOGY CO.,LTD.	

(2/32)

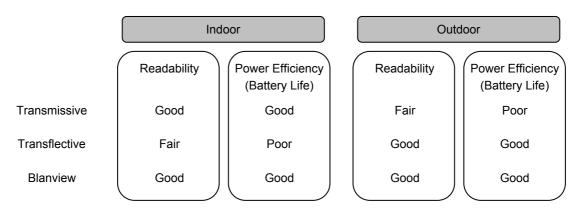
Contents

1. App	plication	••••	4
2. Ou	line Specifications		
2.1	Features of the Product	•••••	5
2.2	Display Method	••••	5
3. Din	nensions and Shape		
3.1	Dimensions	••••	7
3.2	Outward Form	••••	8
3.3	Serial Label (S-LABEL)	••••	9
4. Pin	Assignment	••••	10
5. Abs	solute Maximum Rating	••••	11
6. Re	commended Operating Conditions	••••	11
7. Cha	aracteristics		
7.1	DC Characteristics	••••	12
7.2	AC Characteristics	••••	12
7.3	Input Timing Characteristics	••••	14
7.4	Driving Timing Chart	••••	15
7.5	Example of Driving Timing Chart	••••	16
8. Des	scription of Sequence		
8.1	Power ON/OFF Sequence	••••	17
8.2	Stanby ON/OFF Sequence	••••	18
9. LEI) Circuit	••••	19
10. Cha	aracteristics		
10.	1 Optical Characteristics	••••	20
10.	2 Temperature Characteristics	••••	21
11. Crit	eria of Judgment		
11.		•••••	22
11.	2 Screen and Other Appearance	•••••	23
	iability Test	••••	24
	king Specifications	••••	26
	ndling Instruction		
14.		••••	27
14.	5	•••••	28
14.	•	•••••	28
14.	5 11 5	•••••	29
14.	5	••••	29
	the Protective film		
APPE	NDIX	• • • • • • • • • •	30

1. Application

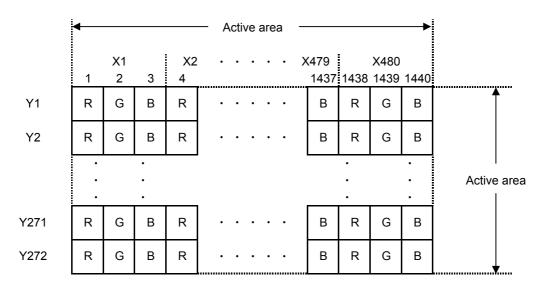
This Specification is applicable to 10.9cm (4.3 inch) Blanview TFT-LCD monitor for non-military use.

- ORTUS TECHNOLOGY makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and ORTUS TECHNOLOGY shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains ORTUS TECHNOLOGY's confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of ORTUS TECHNOLOGY'S confidential information and copy right.
- If Purchaser intends to use this Products for an application which requires higher level of reliability and/or safety in functionality and/or accuracy such as transport equipment (aircraft, train, automobile, etc.), disaster-prevention/security equipment or various safety equipment, Purchaser shall consult ORTUS TECHNOLOGY on such use in advance.
- O This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment.
- ◎ It must be noted as an mechaniacl design manner, especial attention in housing design to prevent arcuation/flexureor caused by stress to the LCD module shall be considered.
- ORTUS TECHNOLOGY assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification.
- ORTUS TECHNOLOGY is not responsible for any nonconformities and defects that are not specified in this specifications.
- ◎ If any issue arises as to information provided in this Specification or any other information, ORTUS TECHNOLOGY and Purchaser shall discuss them in good faith and seek solution.
- ORTUS TECHNOLOGY assumes no liability for defects such as electrostatic discharge failure occurred during peeling off the protective film or Purchaser's assembly process.

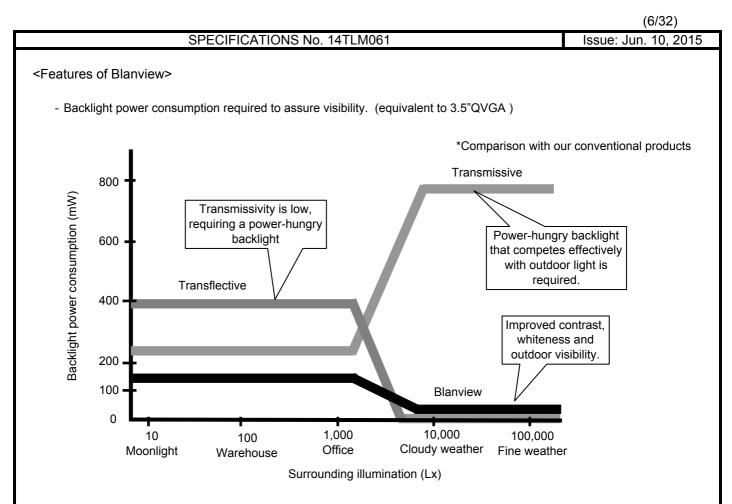

\bigcirc This Product is compatible for RoHS directive.

Object substance	Maximum content [ppm]
Cadmium and its compound	100
Hexavalent Chromium Compound	1000
Lead & Lead compound	1000
Mercury & Mercury compound	1000
Polybrominated biphenyl series (PBB series)	1000
Polybrominated biphenyl ether series (PBDE series)	1000

Issue: Jun. 10, 2015

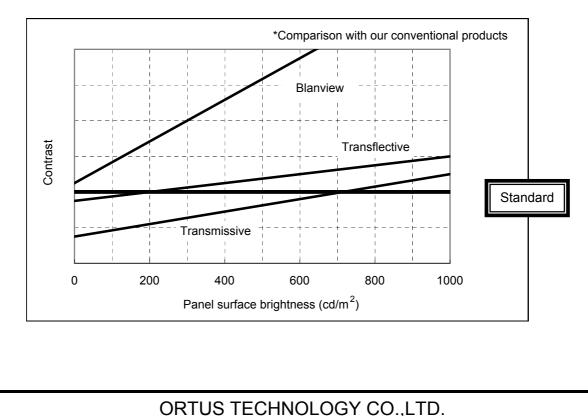

2. Outline Specifications

- 2.1 Features of the Product
 - 4.3 inch diagonal display, 1,440 [H] x 272 [V] dots.
 - 8-bit 16,777,216 color display capability.
 - Single power supply operation of 3.3V.
 - Built in Timing generator (TG), Counter-electrode driving circuitry and power supply circuit.
 - High bright white LED back-light.
 - Blanview TFT-LCD, improved outdoor readability.



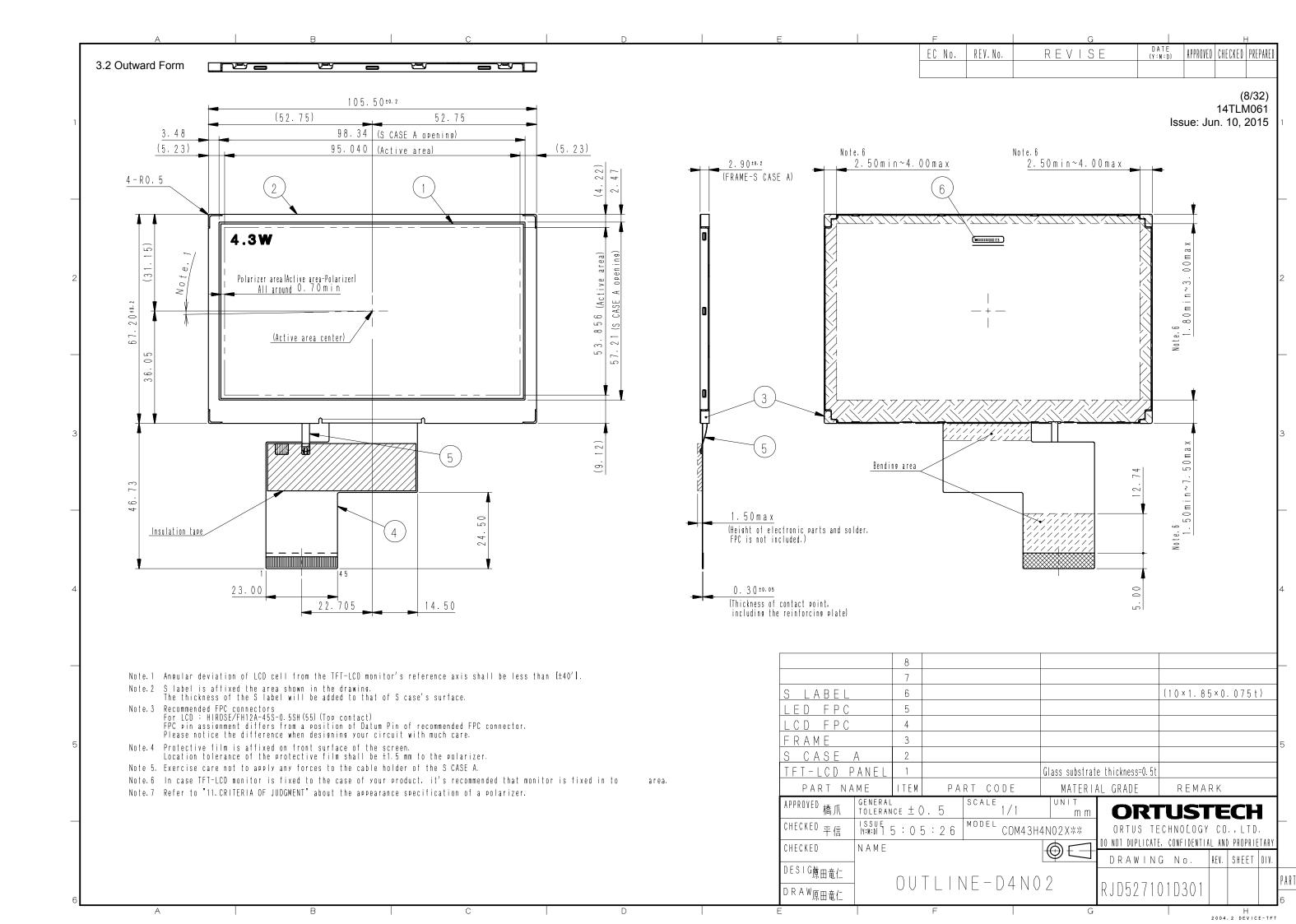
2.2 Display Method

Items	Specifications	Remarks
Display type	TN type 16,777,216 colors.	
	Blanview, Normally white.	
Driving method	a-Si TFT Active matrix.	
	Line-scanning, Non-interlace.	
Dot arrangement	RGB stripe arrangement.	Refer to "Dot arrangement".
Signal input method	8-bit RGB, parallel input.	
Backlight type	High bright white LED.	


Dot arrangement (FPC cable placed downside)

- Contrast characteristics under 100,000Lx. (same condition as direct sunlight.)

With better contrast (higher contrast ratio), Blanview TFT-LCD has the best outdoor readability in three different types of TFT-LCD.


Below chart shows contrast value against panel surface brightness. (Horizontal: Panel surface brightness/ Vertical: Contrast value) LCD panel has enough outdoor readability above our Standard line. (ORTUS TECHNOLOGY criteria)

3. Dimensions and Shape

3.1 Dimensions

Items	Specifications	Unit	Remarks
Outline dimensions	105.50[H] × 67.20[V] × 2.90[D]	mm	Exclude FPC cable.
Active area	95.040[H] × 53.856[V]	mm	10.9cm diagonal.
Number of dots	1,440[H] × 272[V]	dot	
Dot pitch	66.0[H] × 198.0[V]	μm	
Surface hardness of the polarizer	3	Н	Load:2.0N
Weight	40.0	g	Include FPC cable.

3.3 Serial Label (S-LABEL)

1) Display Items

S-label indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits).

* Contents of Display

<u>* * *****</u> <u>******</u> a b c d

	Contents of display							
а	The least significant	digit of manufacture ye	ar					
b	Manufacture month	Jan-A	Jan-A May-E Sep-I					
		Feb-B Jun-F Oct-J						
		Mar-C Jul-G Nov-K						
		Apr-D	Aug-H	Dec-L				
с	Model code	43EBC (Made in Japa	,					
		43ECC (Made in Malaysia)						
d	Serial number							

* Example of indication of Serial label (S-label)

•Made in Japan

5K43EBC000125

means "manufactured in November 2015, model 4.3" EB, C specifications, serial number 000125"

·Made in Malaysia

5K43ECC000125

means "manufactured in November 2015, model 4.3" EC, C specifications, serial number 000125"

2) Location of Serial Label (S-label) Refer to 3.2 "Outward Form".

(10/32)

Issue: Jun. 10, 2015

4. Pin Assignment

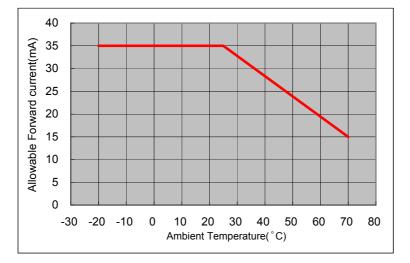
No.	Symbol	Function
1	VSS	GND.
2	VSS	GND.
3	VDD	Power supply.
4	VDD	Power supply.
5	D00	
6	D01	Display data(R).
7	D02	00h: Black
8	D03	D00:LSB D07:MSB
9	D04	
10	D05	Driver has internal gamma conversion.
11	D06	
12	D07	
13	D10	
14	D11	Display data(G).
15	D12	00h: Black
16	D13	D10:LSB D17:MSB
17	D14	
18	D15	Driver has internal gamma conversion.
19	D16	
20	D17	
21 22	D20 D21	Diaplay data(P)
22	D21 D22	Display data(B). 00h: Black
23	D22 D23	D20:LSB D27:MSB
24	D23	D20.23D D21.W3D
26	D24	Driver has internal gamma conversion.
20	D26	Briver nue internal gamma conversion.
28	D27	
29	VSS	GND.
30	CLK	Clock signal.Latching data at the falling edge.
31	STBYB	Standby signal input. (Hi:Normal operation, Lo:Standby operation)
32	HSYNC	Horizontal sync signal input. (Low active)
33	VSYNC	Vertical sync signal input. (Low active)
34	DE	Input data effective signal. (It is effective for the period of "Hi")
35	NC	OPEN.
36	VSS	GND.
37	NC	OPEN.
38	NC	OPEN.
39	NC	OPEN.
40	NC	OPEN.
41	VSS	GND.
42	BLL	Backlight drive (cathode side)
43	BLH	Backlight drive (anode side)
44	NC	OPEN.
45	NC	OPEN.

- Recommended connector: HIROSE ELECTRIC FH12 series [FH12A-45S-0.5SH(55)]

- Please make sure to check a consistency between pin assignment in "3.2 Outward Form" and your connector pin assignment when designing your circuit. Inconsistency in input signal assignment may cause a malfunction.

- Since FPC cable has gold plated terminals, gilt finish contact shoe connector is recommended.

5. Absolute Maximum Rating


Ū						VSS=0V
Item	Symbol	Condition	Ra	ting	Unit	Applicable terminal
			MIN	MAX		
Supply voltage	VDD	Ta=25° C	-0.3	5.0	V	VDD
Input voltage for logic	VI	I	-0.3	VDD+0.3	V	CLK,VSYNC,HSYNC,DE
						D[27:20],D[17:10],D[07:00],
						STBYB
LED direction current	IL	Ta=25° C		35	mA	BLH - BLL
of order		Ta=70° C		15		
Storage temperature range	Tstg		-30	80	°C	
Storage humidity range	Hstg	Non condensing in an environmental				
		moisture at or	less than 40° C	90%RH.		

6. Recommended Operating Conditions

							VSS=0V
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
Supply voltage	VDD		3.0	3.3	3.6	V	VDD
Input voltage for logic	VI	VDD=3.0~ 3.6V	0		VDD	V	CLK,VSYNC,HSYNC, DE,D[27:20],D[17:10], D[07:00],STBYB
Operating temperatur range	Тор	Note 1,2	-20	25	70	°C	Panel surface temperature
Operating humidity		Ta≦30° C	20		80	%	
range	Нор	Ta>30° C	Non condensing in				
			an environmental moisture at or less than 30°C80%RH.				

Note1: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item "10. CHARACTERISTICS".

Note2: Acceptable Forward Current to LED is up to 15mA, when Ta=+70° C. Do not exceed Allowable Forward Current shown on the chart below.

ORTUS TECHNOLOGY CO., LTD.

Issue: Jun. 10, 2015

V88=0V

7. Characteristics

7.1 DC Characteristics

7.1.1 Display Module

			(Unless othe	erwise noted	, Ta=25 °	°C,VDD=3.3V,VSS=0V)
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
Input voltage	VIH	VDD=3.0~3.6V	0.7×VDD		VDD	V	CLK,VSYNC,HSYNC,
for logic							DE,D[27:20],D[17:10],
	VIL		0		0.3×VDD	V	D[07:00],STBYB
Pull down	Rpd			200		kΩ	DE,D[27:20],D[17:10],
resister value							D[07:00]
Pull up	Rpu			200		kΩ	VSYNC,HSYNC,
resister value							STBYB
Current	IDD	fCLK=9MHz		17	34	mA	VDD
consumption		Color bar display					
Standby Current	IDDs	Other input with constant		100	200	μA	
		voltage					

7.1.2 Backlight

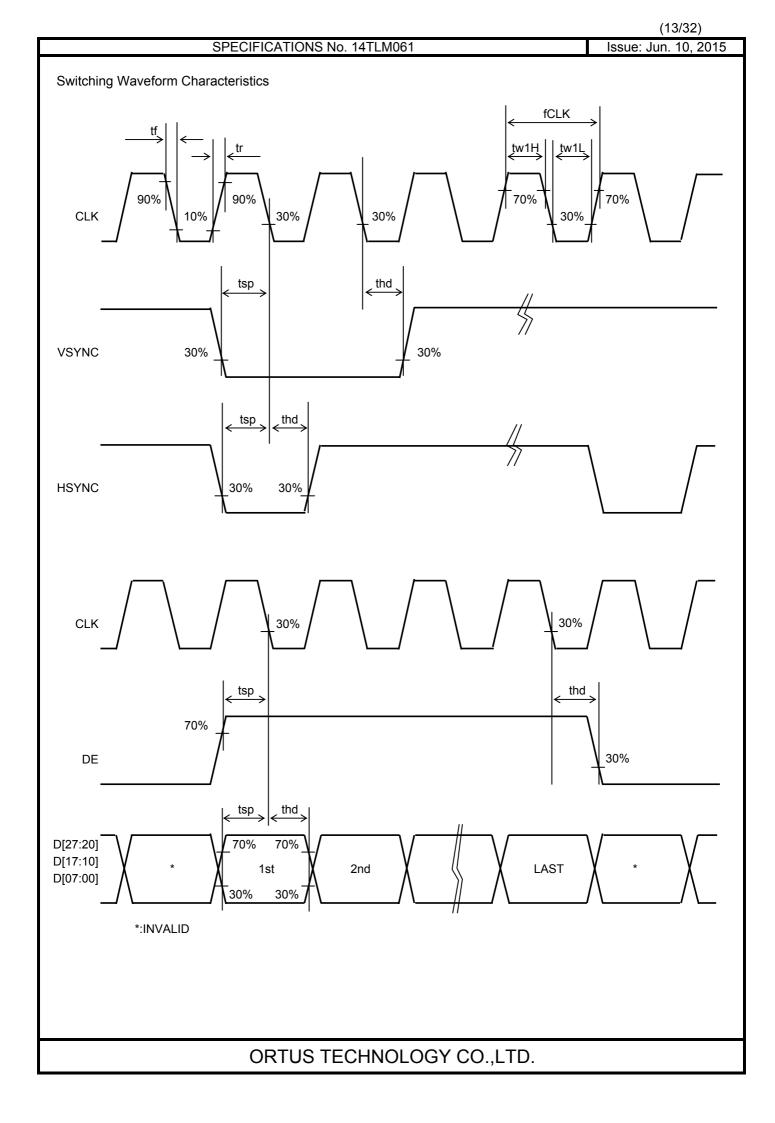
Item	Symbol	Condition		Rating			Applicable terminal
			MIN	TYP	MAX		
Forward current	IL25	Ta=25° C		6.5	35.0	mA	BLH - BLL
	IL70	Ta=70° C			15.0	mA	
Forward voltage	VL	Ta=25° C, IL=6.5mA		24.1	26.9	V	
Estimated Life	LL	Ta=25° C, IL=6.5mA		(20,000)		hr	
of LED		Note					

Note: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.

- This figure is given as a reference purpose only, and not as a guarantee.

This figure is estimated for an LED operating alone.
 As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature.

- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.

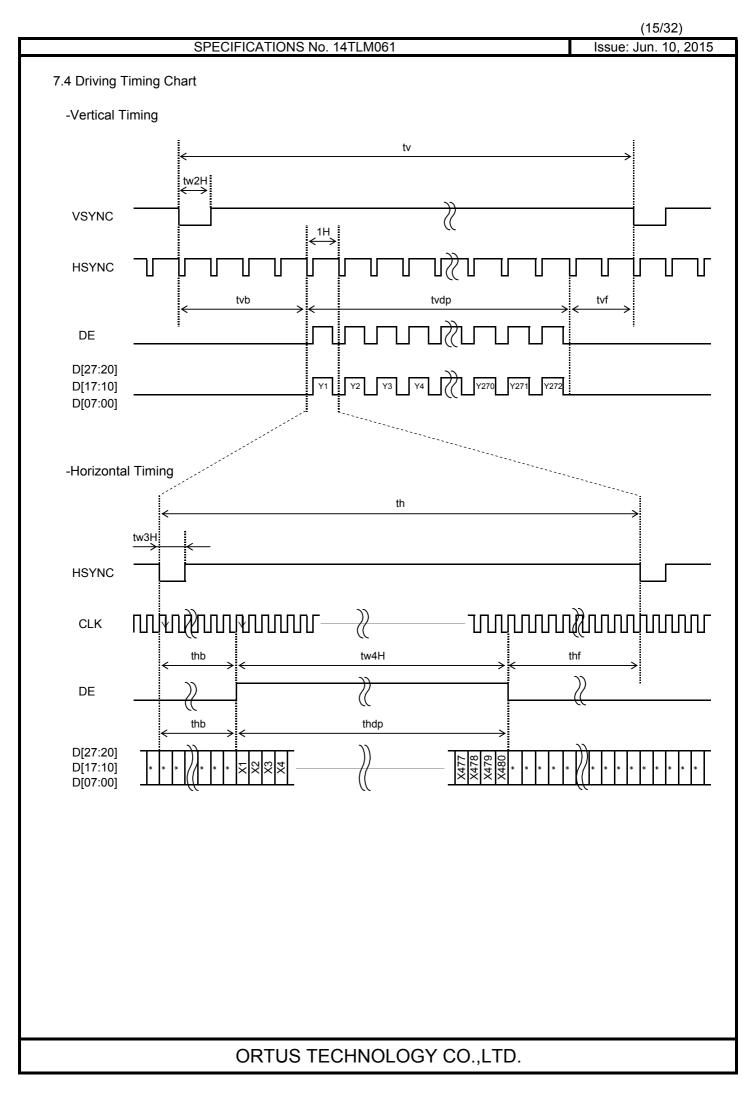

7.2 AC Characteristics

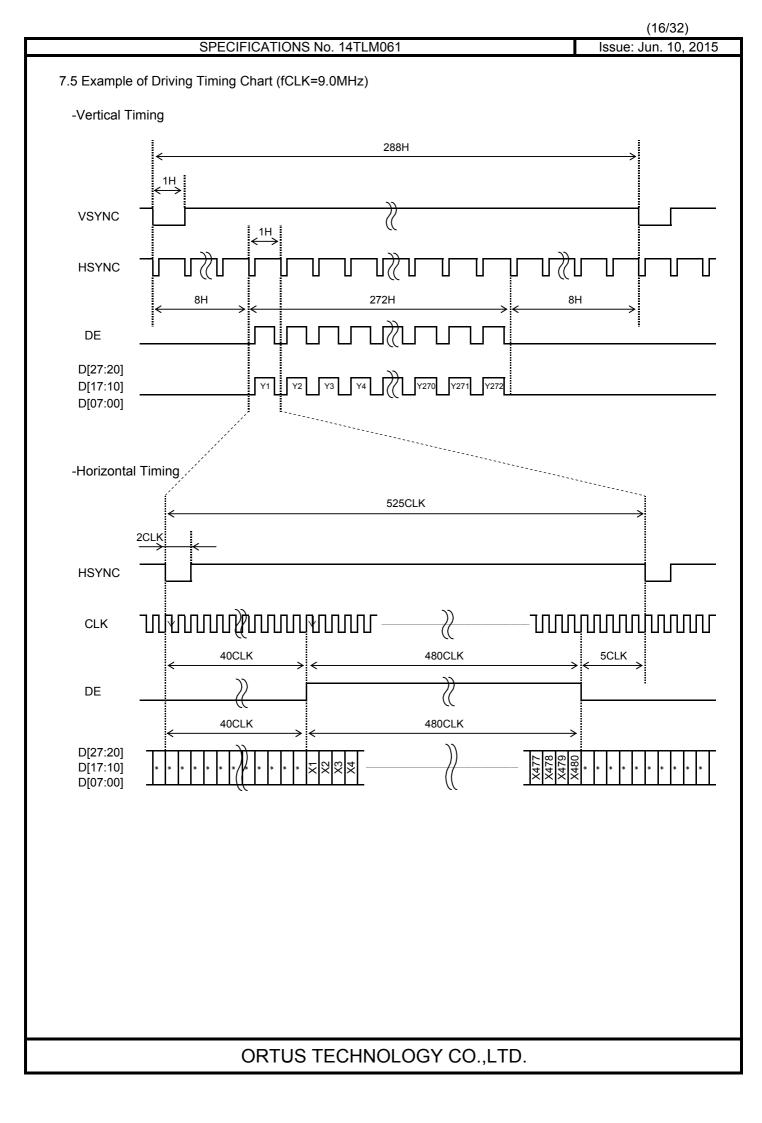
(Unless otherwise noted, Ta=25°C,VDD=3.3V,VSS=0V)

Item	Symbol	Condition	Rating			Unit	Applicable terminal
			MIN	TYP	MAX		
CLK frequency	fCLK		5.0	9.0	12.0	MHz	CLK
CLK rising time	tr	10%→90%			9	ns	
CLK falling time	tf	90%→10%			9	ns	
CLK Low period	tw1L	0.3×VDD or less.	0.4/fCLK		0.6/fCLK	ns	
CLK High period	tw1H	0.7×VDD or more.	0.4/fCLK		0.6/fCLK	ns	
Setup time	tsp		12.0			ns	CLK,VSYNC,HSYNC,
Hold time	thd		12.0			ns	DE,D[27:20],D[17:10],
							D[07:00]

ORTUS TECHNOLOGY CO., LTD.

(12/32)


7.3 Input Timing Characteristics


(Unless otherwise noted, Ta=25°C,VDD=3.3V,VSS=0V)

Item	Symbol		Rating	Unit		Applicable terminal	
		MIN	TYP	MAX			
VSYNC frequency Note	fVSYNC	54	60	66	Hz	VSYNC	
VSYNC signal cycle time	tv	277	288	400	Н	VSYNC,HSYNC	
VSYNC pulse width	tw2H	1			Н		
Vertical back porch	tvb	3	8	31	Н		
Vertical front porch	tvf	2	8	93	Н		
Vertical display period	tvdp		272		Н	VSYNC,HSYNC,DE,D[27:20], D[17:10],D[07:00]	
HSYNC frequency	fHSYNC	15.38	16.67	18.18	Khz	HSYNC	
HSYNC signal cycle time	th	520	525	800	CLK	HSYNC,CLK	
HSYNC pulse width	tw3H	1			CLK		
Horizontal back porch	thb	36	40	255	CLK	HSYNC,DE,CLK	
Horizontal front porch	thf	4	5	65	CLK		
Horizontal display period	thdp		480		CLK	DE,D[27:20],D[17:10],D[07:00], CLK	
DE pulse width	tw4H		480		CLK	DE,CLK	

Note: The characteristic of this item is recommended standard.

Please use it after it confirms it enough like the display fineness etc. When it comes off from this characteristic and it is used.

8. Description of Sequence

The outline of "Power ON/OFF Sequence" and "Standby ON/OFF Sequence" is shown below.

	Power ON						Power (DFF	
	Sequence		Stan	dby ON/OFF	Sequence		¦ S	equence	
	Stanby OFF Sequence	Normal Operation		period	Stanby OFF Sequence	Normal Operation ◆		Standby period	
VDD_/			 	 			 	<u> </u>	
STBYB				ſ		\	 		
VSYNC	1789	10 11	14	<u>↓</u> /⊏	1789	10	14	ħ	
Other input			, 				1 1 1 1 1		
signals			 	-	-			-	
DISP	/White/	Normal Display	White	Display (DFF /White	Normal Display	White		
Backlight	OFF		•	OFF			OFF		

8.1 Power ON/OFF Sequence

The sequence of the Power On/Off and the signal input must defend the following conditions.

	Power ON F	Power OFF
VDD		ote
STBYB		
VSYNC	<u>1 2 3 4 5 6 7 8 9 10 11</u> <u>1 2 3 4 5 6 7 8 9 10 11</u>	
CLK		
HSYNC		
DE		
DISP	Display OFF	N
Backlight		tate of standby
	For Power OFF,please turn off VDD since 50msec after the standby state shifts. When CLK and the VSYNC signal are stopped or the power supply is turned off to a regulated frame or less, the afterimage might remain.	

(1	8/32)	
()	0/32)	

Issue: Jun. 10, 2015

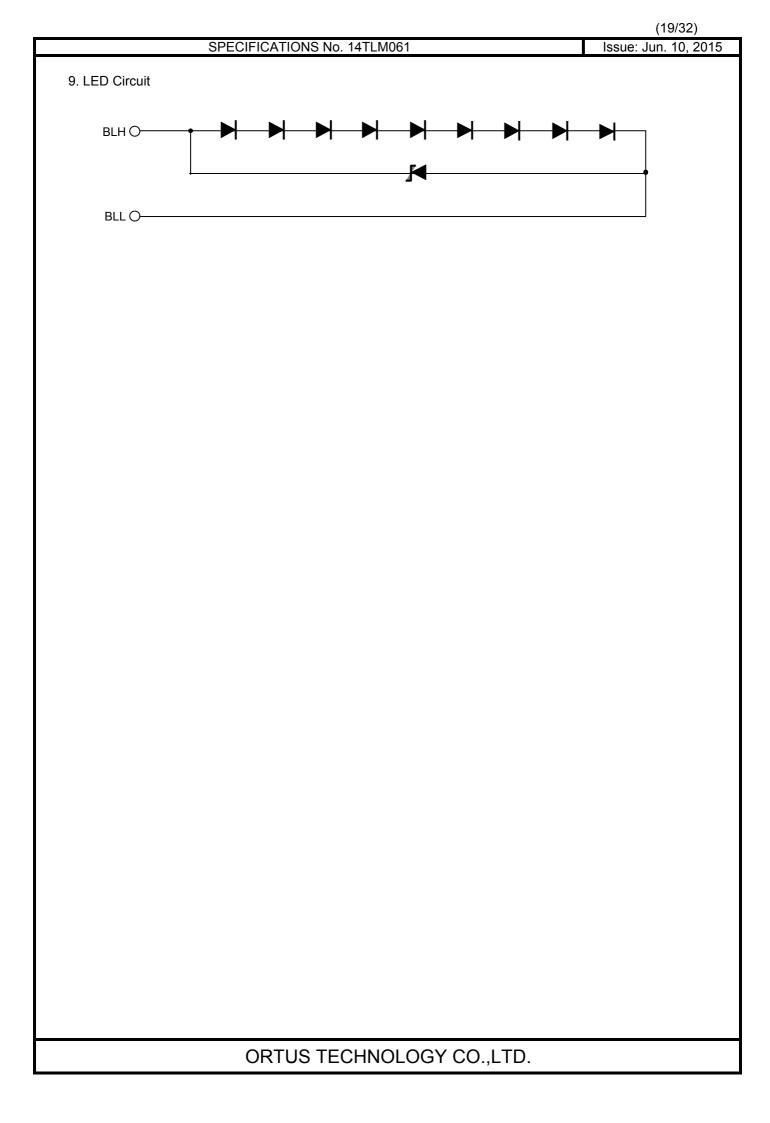
SPECIFICATIONS No. 14TLM061

8.2 Stanby ON/OFF Sequence

It explains Standby ON/OFF sequence by the STBYB signal.

9

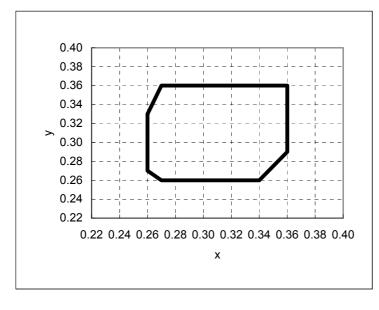
The following time will be needed by the shift in the state of the standby from the standby setting according to the STBYB signal.


Meanwhile, VSYNC signal and the CLK signal should keep being supplied.

STBYB			
VSYNC			
DATA output	Normal Display	White Display OFF	State of standby
Backlight	ON	OFF	

Similarly, the time of nine frames will be needed by the time a usual display is begun from the standby release by the STBYB signal.

Please begin outputting in the 8th frame on the Display Data.


STBYB		
VSYNC		
DATA output	State of standby White Normal Display	
Backlight	OFF ON	
	ORTUS TECHNOLOGY CO.,LTD.	

Issue: Jun. 10, 2015

10. Characteristics

10.1 Optical Characteristics < Measurement Condition > Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS) , EZcontrast160D (ELDIM) Driving condition: VDD = 3.3V,VSS=0V Optimized VCOMDC Backlight: IL=6.5mA Measured temperature: Ta=25° C									
	Item	Symbol	Condition	MIN	TYP	MAX	Unit	Note No.	Remark
Response time	Rise time	TON	[Data]= FFh→00h			40	ms	1	*
Resp tin	Fall time	TOFF	[Data]= 00h→FFh	_	_	60	ms		
Contrast ratio	Backlight ON	CR	[Data]= FFh/00h	240	400			2	
Con	Backlight OFF			_	7.5	-			
6	Left	θL	[Data]=	80	_	_	deg	3	*
Viewing angle	Right	θR	FFh/00h	80		-	deg		
/iev	Up	φU	CR≧10	80		_	deg		
	Down	φD		80		_	deg		
White	e Chromaticity	х	[Data]=FFh	White ch	romaticit	y range		4	
vvinic	, onionationy	у							
Burn-in				No noticeable burn-in image shall be observed after 2 hours of window pattern display.		5			
Cente	er brightness		[Data]=FFh	315	450	_	cd/m ²	6	
Brightness distribution		on	[Data]=FFh	70	—	—	%	7	

[White Chromaticity Range]

у
0.33
0.27
0.26
0.26
0.29
0.36
0.36

White Chromaticity Range

10.2 Temperature Characteristics

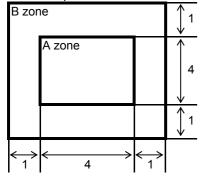
< Measurement Condition >	
Measuring instruments:	CS1000 (KONICA MINOLTA), LCD7200(OTSUKA ELECTRONICS)
Driving condition:	VDD = 3.3V,VSS=0V
	Optimized VCOMDC
Backlight:	IL=6.5mA

Item			Specif	Remark	
item			Ta=-20° C	Ta=70° C	Remain
Contrast ratio		CR	40 or more	40 or more	Backlight ON
Response time	Rise time	TON	200 msec or less	30 msec or less	*
Response ame	Fall time	TOFF	300 msec or less 50 msec or less		*
Display Quality			No noticeable display defect or ununiformity should be observed.		Use the criteria for judgment specified in the section 11.

* Measured in the form of LCD module.

11. Criteria of Judgment

11.1 Defective Display and Screen Quality


Test Condition:	Observed TFT-LCD monitor from front during operation with the following conditions
Driving Signal	Raster Patter (RGB, white, black)
Signal condition	[Data]:FFh, 70h, 00h (3 steps)
Observation distance	30 cm
Illuminance	200 to 350 lx
Backlight	IL=6.5mA

Defect item			Defect content	Criteria
	Line defect	Black, white or colo	r line, 3 or more neighboring defective dots	Not exists
~		Uneven brightness	on dot-by-dot base due to defective	Refer to table 1
Quality		TFT or CF, or dust i	s counted as dot defect	
		(brighter dot, darker	dot)	
Display	Dot defect	High bright dot: Visi	ble through 2% ND filter at [Data]=00h	
lisp		Low bright dot: Visi	ble through 5% ND filter at [Data]=00h	
		Dark dot: Appear da	ark through white display at [Data]=70h	
		Invisible through 5%	ND filter at [Data]=00h	ignored
	Dirt	Uneven brightness (white stain, black stain etc)		Invisible through 1% ND filter
~	Foreign particle	Point-like	0.25mm< φ	N=0
Quality			0.20mm< φ ≦0.25mm	N≦2
			φ ≦0.20mm	Ignored
Screen	particie	Liner	3.0mm <length 0.08mm<width<="" and="" td=""><td>N=0</td></length>	N=0
			length \leq 3.0mm or width \leq 0.08mm	Ignored
0)	Others			Use boundary sample
	Oulers			for judgment when necessary

φ(mm): Average diameter = (major axis + minor axis)/2 Permissible number: N

Table 1					
Area	High bright dot	Low bright dot	Dark dot	Total	Criteria
А	0	2	2	- 3	Permissible distance between same color bright dots (includes neighboring dots): 3 mm or more
В	2	4	4	6	Permissible distance between same color high bright dots (includes neighboring dots): 5 mm or more
Total	2	4	4	7	

<Landscape model>

Division of A and B areas

B area: Active area

Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure)

SPECIFICATIONS No. 14TLM061	
-----------------------------	--

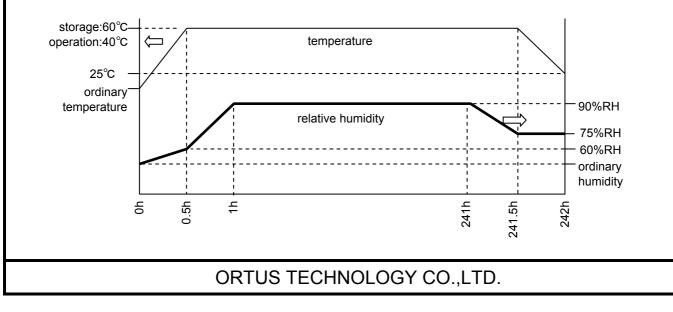
Issue: Jun. 10, 2015

11.2 Screen and Other Appearance

Testing conditions

Observation distance Illuminance

30cm 1200∼2000 lx

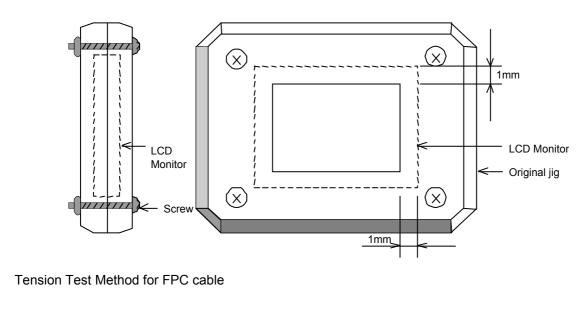

	Item	Criteria	Remark
		lanara invisible defect when the backlight is an	
L	Flaw	Ignore invisible defect when the backlight is on.	Applicable area:
zei	Stain		Active area only
Polarizer	Bubble		(Refer to the section
Ъо	Dust		3.2 "Outward form")
	Dent		
	S-case	No functional defect occurs	
	FPC cable	No functional defect occurs	

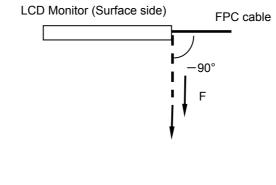
12. Reliability Test

	Test item	Test condition	number of failures
	High temperature storage	Ta=80° C 240hr	0/3
	Low temperature storage	Ta=-30° C 240hr	0⁄3
st	High temperature & high	Ta=60° C, RH=90% 240hr	0⁄3
/ te	humidity storage	non condensing 🛛 👋	
Durability test	High temperature operation	Tp=70° C 240hr	0⁄3
ırat	Low temperature operation	Tp=-20° C 240hr	0⁄3
Ď	High temp & humid operation	Tp=40°C, RH=90% 240hr	0⁄3
		non condensing *	
	Thermal shock storage	-30←→80° C(30min/30min) 100 cycles	0⁄3
		Confirms to EIAJ ED-4701/300	0⁄3
	Electrostatic discharge test	C=200pF,R=0Ω,V=±200V	
	(Non operation)	Each 3 times of discharge on and power supply	
		and other terminals.	
	Surface discharge test	C=250pF, R=100Ω, V=±12kV	0⁄3
est	Surface discharge test (Non operation)	Each 5 times of discharge in both polarities	
al te	(Non operation)	on the center of screen with the case grounded.	
Mechanical environmental test		Pull the FPC with the force of 3N for 10 sec.	0⁄3
ũ	FPC tension test	in the direction - 90-degree to its	
/iro		original direction.	
env		Pull the FPC with the force of 3N for 10 sec.	0⁄3
Sal	FPC bend test	in the direction -180-degree to its	
anic		original direction. Reciprocate it 3 times.	
sch	Vibration test	Total amplitude 1.5mm, f=10 \sim 55Hz, X,Y,Z	0⁄3
Me	vibration test	directions for each 2 hours	
		Use ORTUS TECHNOLOGY original jig (see next	0⁄3
		page) and make an impact with peak acceleration	
	Impact test	of 1000m/s ² for 6 msec with half sine-curve at	
		3 times to each X, Y, Z directions in	
		conformance with JIS 60068-2-27-2011.	
Packing test		Acceleration of 19.6m/s ² with frequency of	0∕1 Packing
	Packing vibration-proof test	$10 \rightarrow 55 \rightarrow 10$ Hz, X,Y, Zdirection for each	
king		30 minutes	
act	Packing drop test	Drop from 75cm high.	0∕1 Packing
		1 time to each 6 surfaces, 3 edges, 1 corner	

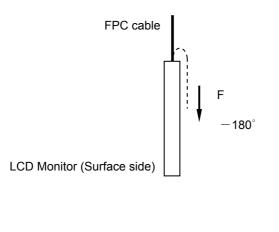
Note:Ta=ambient temperature Tp=Panel temperature

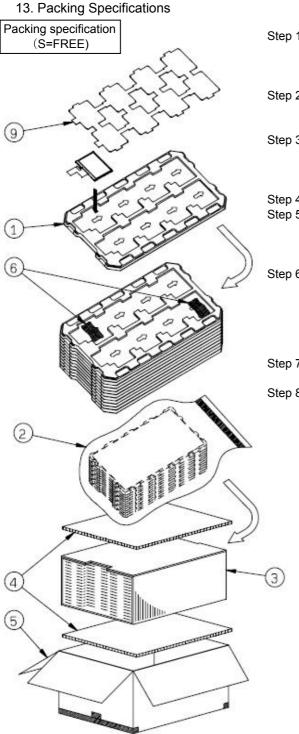
% The profile of high temperature/humidity storage and High Temperature/humidity operation (Pure water of over 10M Ω ·cm shall be used.)


Issue: Jun. 10, 2015


Table2.Reliability Criteria

Measure the parameters after leaving the monitor at the ordinary temperature for 24 hours or more after the test completion.


item	Standard	Remarks
Display quality	No visible abnormality shall be seen.	As criteria of
		"11 Criteria of Judgment".
Contrast ratio	40 or more	Backlight ON


ORTUS TECHNOLOGY Original Jig

Bend Test Method for FPC cable

Remark: The return of packing materials is not required.

	Packing item name	Specs., Material
1	Tray	A-PET Antistatic
2	Sealing bag	
3	Carton box	Corrugated cardboard
4	Inner board	Corrugated cardboard
5	Outer carton	Corrugated cardboard
6	Drier	Moisture absorber
\bigcirc	Packing tape	
8	Extra outer carton	Corrugated cardboard
9	Foam sheet	PE Anti-static

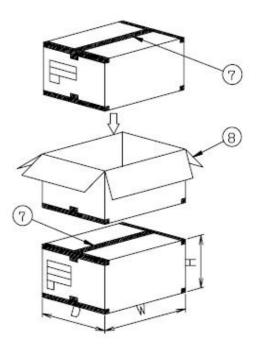
Step 1. Each product is to be placed in one of the cut-outs of the tray with the display surface facing upward. (8products per tray)

Foam sheet is put on the products.

Step 2. Each tray is to be piled up in same direction and the trays be in a stack of 10.

One empty tray is to be put on the top of stack of 10 trays.

Step 3. 2 packs of moisture absobers are to be placed on the top tray as shown in the drawing.


Put piled trays into a sealing bag.

- Vacuum and seal the sealing bag with the vacuum sealing machine.
- Step 4. The stack of trays in the sealing back is to be inserted into a carton box.
- Step 5. A corrugated board is to be placed in the bottom of an outer carton. The carton box is to be put on the corrugated board in the outer carton. Another corrugated board is to be placed on the top of the inserted carton box.
- Step 6. The outer carton is to be sealed in H-shape with packing tape as shown in the drawing.

The model number, quantity of products, and shipping date are to be printed on the 2 opposite sides of the outer carton with black ink. If necessary, shipping labels or impression markings are to be put on the outer carton.

- Step 7. The outer carton is to be inserted into an extra outer carton with same direction.
- Step 8. The extra outer carton is to be sealed in H-shape with packing tape as shown in the drawing.

The model number, quantity of products, and shipping date are to be printed on the 2 opposite sides of the outer carton with black ink. If necessary, shipping labels or impression markings are to be put on the extra outer carton.

Dimension of ex	tra outer carton	
D : Approx.	(338mm)	
W : Approx.	(549mm)	
H : Approx.	(198mm)	
Quantity of products packed in one carton: 80		80
Gross weight : Appro	x. 6.7Kg	

14. Handling Instruction

14.1 Cautions for Handling LCD panels

	Caution	
(1)	Do not make an impact on the LCD panel glass because it may break and you may get injured from it.	
(2)	If the glass breaks, do not touch it with bare hands. (Fragment of broken glass may stick you or you cut yourself on it.	
(3)	If you get injured, receive adequate first aid and consult a medial doctor.	
(4)	Do not let liquid crystal get into your mouth. (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.	
(5)	If liquid crystal adheres, rinse it out thoroughly. (If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor.	
(6)	If you scrap this products, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside.	
(7)	Do not connect or disconnect this product while its application products is powered on.	
(8)	Do not attempt to disassemble or modify this product as it is precision component.	
(9)	If a part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please. Please insulate it with the insulating tape etc. if necessary. The defective operation is caused, and there is a possibility to generation of heat and the ignition.	
(10)	Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnoramal operation is generated. We recommend you to add excess current protection circuit to power supply.	
	Caution This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.	

10 2015

Issue: Jun.

14.2 Precautions for Handling

- Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean.
 Do not touch the surface of the monitor as it is easily scratched.
- 2) Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge, Properly set up equipment, jigs and machines, and keep working area clean and tidy for handling the TFT monitors.
- Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.
- 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.
- 5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.
- Do not stain or damage the contacts of the FPC cable .
 FPC cable needs to be inserted until it can reach to the end of connector slot.
 During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion.
 Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable.
- 7) Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable.
- Peel off the protective film on the TFT monitors during mounting process. Refer to the section 14.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.

14.3 Precautions for Operation

- Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures.
- In case of powering up or powering off this LCD module, be sure to comply the sequence as instructed in this specification.
- Do not plug in or out the FPC cable while power supply is switch on. Plug the FPC cable in and out while power supply is switched off.
- 4) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.
- 5) Do not display a fixed image on the screen for a long time. Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time. Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.

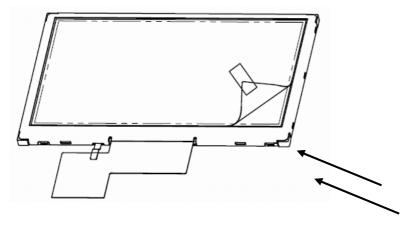
14.4 Storage Condition for Shipping Cartons

Storage environment

Temperature	0 to 40°C
Humidity	60%RH or less No-condensing occurs under low temperature with high humidity condition.
Atmosphere	No poisonous gas that can erode electronic components and/or wiring materials should be detected.
 Time period 	3 months
• Unpacking	To protect the TFT monitors from static damage during unpacking, keep room humidity more than 50%RH and implement effective countermeasures against static electricity such as establishing a ground (an earth) before unpacking.
Maximum piling up	7 cartons

14.5 Precautions for Peeling off the Protective film

The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films.

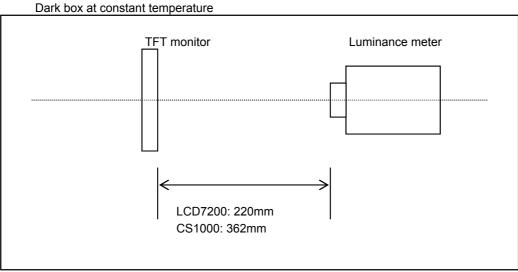

A) Work Environment

- a) Humidity: 50 to 70 %RH, Temperature15 to 27 °C
- b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Anti-static treatment should be implemented to work area's floor.
- c) Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt.

B) Work Method

The following procedures should taken to prevent the driver ICs from charging and discharging.

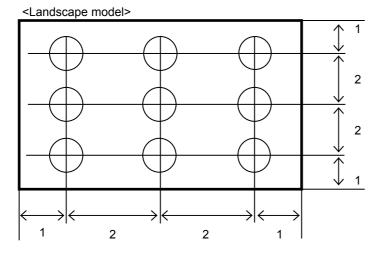
- a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower right when the FPC cable is facing to the downside.
 Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower.
- b) Put an adhesive tape (Scotch tape, etc) at the lower right corner area of the protective film to prevent scratch on surface of TFT monitor.
- c) Peel off the adhesive tape slowly (spending more than 2 seconds to complete) by pulling it to opposite direction.



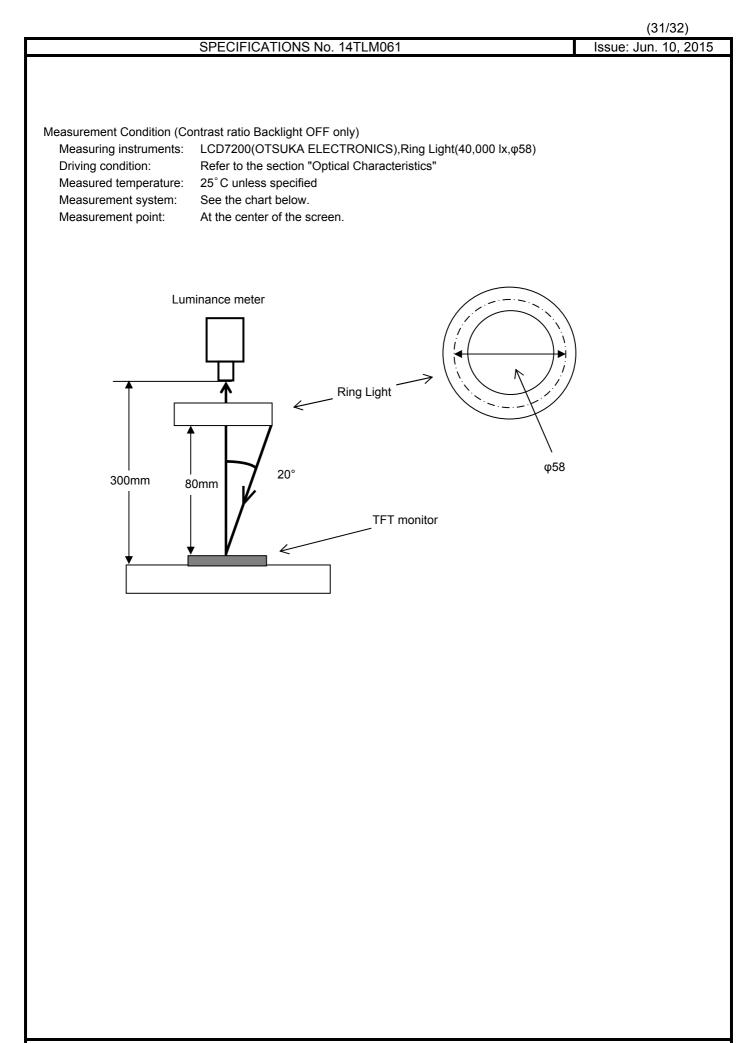
Direction of blowing air (Optimize air direction and the distance)

APPENDIX

Reference Method for Measuring Optical Characteristics and Performance


1. Measurement Condition (Backlight ON)		
Measuring instruments:	CS1000 (KONICA MINOLTA), LCD7200(OTSUKA ELECTRONICS), EZcontrast160D (ELDIM)	
Driving condition:	Refer to the section "Optical Characteristics"	
Measured temperature:	25°C unless specified	
Measurement system:	See the chart below. The luminance meter is placed on the normal line of measurement system.	
Measurement point:	At the center of the screen unless otherwise specified	

Measurement is made after 30 minutes of lighting of the backlight.


Measurement point:

At the center point of the screen Brightness distribution: 9 points shown in the following drawing.

Dimensional ratio of active area

Backlight IL=6.5mA

Notice	Item	Test method	Measuring instrument	Remark
1	Response time	Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white.	LCD7200	Black display [Data]=00h White display [Data]=FFh TON
		White Black White		Rise time
		White		Fall time
		90%		
		$10\% \qquad \qquad$		
2	Contrast ratio	Measure maximum luminance Y1([Data]=FFh) and	CS1000	Backlight ON
		 minimum luminance Y2([Data]=00h) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 8mmφ(CS1000) Diameter of measuring point: 8mmφ(LCD7200) 	LCD7200	Backlight OFF
3	Viewing angle Horizontalθ Verticalφ	Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is 10.	EZcontrast160D	
4	White chromaticity	Measure chromaticity coordinates x and y of CIE1931 colorimetric system at [Data] = FFh Color matching faction: 2°view	CS1000	
5	Burn-in	Visually check burn-in image on the screen after 2 hours of "window display" ([Data]=FFh/00h).		At optimized VCOMDC
6	Center brightness	Measure the brightness at the center of the screen.	CS1000	
7	Brightness distribution	(Brightness distribution) = 100 x B/A % A : max. brightness of the 9 points	CS1000	

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

FORTEC Elektronik AG Lechwiesenstr. 9 86899 Landsberg am Lech

Phone: E-Mail: Internet: +49 8191 91172-0 sales@fortecag.de www.fortecag.de

Fortec Group Members

Switzerland

United Kingdom

USA

FORTEC Elektronik AG Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 office@fortec.at www.fortec.at

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG Bahnhofstraße 3

5436 Würenlos

Phone: E-Mail: Internet: +41 44 7446111 info@altrac.ch www.altrac.ch

Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: E-Mail: Internet: +44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 <u>info@apollodisplays.com</u> <u>www.apollodisplays.com</u>